Research Article | Open Access | 10.31586/Chemistry.0403.04

Responses of Hydroponically Grown Sorghum (Sorghum bicolor L.M) to Zinc (Zn) Stress


Abiotic stress especially due heavy metals is one of the major environmental problems that threatens food security and pose greater risks to human health worldwide. In this research, greenhouse hydroponic experiments were carried out to study the morphological and biochemical responses of Sorghum bicolor L.M to different Zinc (Zn) levels. Two-week-old seedlings transplanted in hydroponic solutions were treated with different doses of Zn in the concentration ranges of 5, 25, 50, 100 and 200 mg/L supplied as ZnSO4. 5H2O. After 21 day of culture, the plants were harvested, blotted to dryness and separated into roots and shoots. The root and shoot lengths, dry weights and non-enzymatic biochemical parameters such as proline, Chlorophyll a, b, Carotenoids (pigments) were determined. The results indicate that Zn applications significantly (P<0.05) depressed the lengths of root and shoot, dry weights and pigment contents compared to untreated plants (control). The effects were more pronounced with increased Zn dosage. The accumulation of the metal and proline contents in treated plants however, increase gradually with increasing Zn concentrations (P<0.05). The changes in these parameters had resulted in toxicity symptoms and overall growth retardation especially at elevated concentrations and the estimated critical toxicity thresholds in both solution and tissue concentrations suggest that sorghum bicolor L.M should not be grown beyond Zn concentration of above 3.2 mg/L.



Figure 3 of 4


Paul EV, Manu A, Surekha KA, Jianhua Z, Jian-Kang Z. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant J. 2006:45:523-539.
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant & Cell Physiol. 2011:52:1569–1582. DOI:
Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella JP. Assessing Zinc Thresholds for Phytotoxicity and Potential Dietary Toxicity in Selected Vegetable Crops. Comm. in Soil Sci. & Plant Analysis. 2003:34:1421-1434.
Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 2010:8:199–216.
Fahad S, Bajwa, Nazir U, Anjum AS, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Shah S, ZI, Muhammad, Alharby, Wu C, Wang D, Huang J. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017:8:1147.
Lekshmi S, Jayadev A. Effect of Heavy Metal Stress (Cadmium) on Morphological Physiological Activity and Anatomy of Cow Pea Plant (Vigna Uncuigulata). Int. J Research in Applied Sci. & Eng. Tech. 2017:281-290.
Boyer JS. Plant Productivity and Environment. Science, 218, 1982:443-448.
Acquaah G. Principles of plant genetics and breeding; Blackwell, Oxford, UK. 2007: pp. 569.
Misra A, Srivastava AK, Srivastava NK, Khan A. Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments, and biochemical changes in essential monoterpene oil(s) of Pelargonium graveolens. Photosynthetica. 2005:43:153-155.
Hafeez B, Khanif M, Saleem M. Role of zinc in plant nutrition: a review. Am. J. Exp. Agric. 2013:374–391.
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. & Molecular Biol. Plants. 2010:16:259–72.
Zhao FJ, Lombi E, McGrath SP. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspicaerulescens. Plant Soil. 2003:249:37-43.
Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003:91:179–194.
Sharma P, Dubey RS. Involvement of Oxidative Stress and Role of Antioxidative Defense System in Growing Rice Seedlings Exposed to Toxic Concentrations of Aluminum. Plant Cell Reports. 2007:26:2027-2038.DOI:
Gao JM, Xiao Q, Ding LP, Chen MJ, Yin L, Li J Z, Zhou SY, He GY. Differential responses of lipid peroxidation and antioxidants in Alternanther aphiloxeroides and Oryza sativa subjected to drought stress. Plant Growth Regul. 2008:56:89–95.
Reichman SM. The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. Australian Minerals & Energy Environment Foundation. 2002. Accessed on November 21, 2011. Available:
Hasan MH, Reza A, Habib K. Effect of Zinc Toxicity on Plant Productivity, Chlorophyll and Zn Contents of Sorghum (Sorghum Bicolor) and Common Lambsquarter (Chenopodium Album). Int. J. of Agric. Research and Review. 2012:2:247-254.
DeVries, J. Securing the Harvest. Biotechnology, Breeding and Seed Systems for African Crops. The Rockefeller Foundation, New York, USA, 2001; pp. 224.
Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G. Applying genotyping and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biology. 2008:8:103.
Cakmak I, Gulut KY, Marschner H, Graham RD.  Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J. Plant Nutr. 1994:17:1–17.
Hopkins BG, Whitney DA, Lamond RE, Jolly VD. Phytosiderophore release by Sorghum, wheat, and corn under zinc deficiency. J Plant Nutri. 2008: 22623-2637.
Yadav SK. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African J Bot. 2010:76:167-179.
Ahmad M, Seyed GM, Henk S. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiolaflavida. Chemosphere. 2013: 93:986–989.
Bates LS, Waldren RP, Teare ID. Rapid Determination of Free Proline for Water-Stress Studies. Plant & Soil. 1973:39:205 – 207.
Arnon DI. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949:24:1–15.
Lichtenthaler HK, Wellburn AR. Determination of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochemical Society Trans. 1983:11, 591-603.
Sharma DC, Sharma CP. Chromium Uptake and its Effects on Growth and biological Yield of Wheat. Cereal Research Comm. 1993:21:317-322.
Balashouri P. Effect of zinc on germination, growth and pigment content and phytomass of Vignaradiata and Sorghum bicolour. J Ecobio. 1995:7:109–114.
Cherif J, Mediouni C, Ammar WB, Jemal F. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum) J. Environ. Sci. 2011:23:837-844.
Barceló J. Poschenrieder, C. Plant water relations are affected by heavy metals: a review. J. Plant Nutr. 1990:13:1–37.
Sagardoy R, Morales F, Lopez-Millan AF, Abadia A, Abadia J. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 2008: 11: 339-350.
Li TQ, Yang XE, Lu LL, Islam E, He ZL. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J. Hazard Mater. 2009:169:734–741.
Manivasagaperuma R, Vijayarengan P, Balamurugan S, Thiyagarajan G. Effect of zinc on growth, dry matter yield and nutrient content of Vigna Radiata (L.) Wilczek. Int. J. Recent Scientific Research. 2012:3:687-692.
Tripathy BC, Mohanty P. Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Plant Physiol. 1980:66:1174-1178.
Zhang ZQ, Wong MH, Nie XP, Lan CY. Effects of zinc (zinc sulfate) on rhizobia-earleaf acacia (Acacia auriculaeformis) symbiotic association. Bioresource Tech. 1998:64:97-104.
Stanisławska-Glubiak E, Korzeniowska J. Criteria for Assessing the Toxicity of Zinc to Plants. IUNGPIB. 2005:107:12.
Baran A. Assessment of Zea mays Sensitivity to Toxic Content of Zinc in Soil. Pol. J. Environ. Stud. 2013:22: 77-83.
Davis JG, Parker MB. Zinc toxicity symptom development and portioning of biomass and zinc in peanut plants. J. Plant Nutr. 1993:16:2353-2369.
Soudek P, Petrova S, Vankova R, Song J, Vanek T. Accumulation of heavy metals using Sorghum sp., Chemosphere. 2014:15-24.
Anamika S, Eaparn S, Fulekar M. Phytoremediation of Cd, Pb and Zn by Brassica Juncea L. Czern and Cross J. Applied Biosci. 2009:13:726-736.
Mourato MP, Moreira IN, Leitão, I, Pinto FR, Sales JR, Martins LL. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015:16:17975-17998.
Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T. Effect of heavy metal stress on proline, malondialdehyde, and superoxidedismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Safety. 2007:66:204–209.
Szabados L, Savouré, A. Proline: A multifunctional amino acid. Trends in Plant Sci. 2009:15:89-97.
Bacˇkor M, Fahselt D, Wu CT. Free proline content ispositively correlated with copper tolerance of the lichen photobiont Trebouxiaerici (Chlorophyta). Plant Sci. 2004:167: 151–157.
Saradhi A, Saradhi PP. Proline accumulation under heavy metal stress. J Plant Physiol. 1991:138: 554-558.
Radic´ S, Babic´ M, Skobic´ D, Roje V, Pevalek-Kozlina. B. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol. Environ. Saf. 2010:73:336-342.
Bassi R, Sharma SS. Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry. 1993:33:1339-1342.
Handique GK, Handique AK. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. J Environ Biol. 2009:30:299-302.
Matysik J, Alia BB, Mohanty P. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002:82:525–532.
Mishra S, Dubey R.S. Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. J. Plant Physiol. 2006:163:927–936.
Leila R, Abbas A. Biochemical responses of Gouan (Aeluropuslittoralis) to heavy metals stress. Australian J. Crop Sci. 2011:5:375-383.
Küpper H, Küpper F, Spiller M. In situ detection of heavy metal substitution chlorophylls in water plants. Photosyn Res. 1998:58:123-133.
Madhava RKV, Sresty TVS. Antioxidative parameters in the seedlings of pigeon pea (Cajanuscajan (L.) Millspaugh) in response to Zn and Ni stresses Plant Sci. 2000: 157:113-128.
Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990:13:195–206.
Sandalio LM, Dalurzo HC, Go´mez M, Romero-Puertas M.C, Delrı´o, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001:52:2115–2126.
Fikriye KZ, Omer M. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in Bean (Phaseolus vulgaris) seedlings. Acta Biologica Cracoviensia. 2005:47:157-164.
Article metrics
Views 183
Downloads 138
Citations 0
PDF View Full-Text