View options
Result details

Results per page
Articles per page View Sort by

1 results matched your search query
Keywords = The Trivedi Effect®

  • Open Access Research Article
    Export citation: APA   BibTeX   EndNote   RIS  
    Trends Journal of Sciences Research 2018, 3(3), 124-132. http://doi.org/10.31586/Biochemistry.0303.04
    30 Views 15 Downloads PDF Full-text (921.556 KB)  HTML Full-text
    Abstract
    The bone health is an important part of healthy-life and longevity in current situation due to huge toxins and contaminants in the environment and food chain. Considering the importance of bone health in the modern era, the present study was undertaken to investigate the effect of the Consciousness Energy
    [...] Read more.
    The bone health is an important part of healthy-life and longevity in current situation due to huge toxins and contaminants in the environment and food chain. Considering the importance of bone health in the modern era, the present study was undertaken to investigate the effect of the Consciousness Energy Healing (The Trivedi Effect?) Treatment on Dulbecco's Modified Eagle Medium (DMEM) in which the human bone osteosarcoma cells - MG-63 (ATCC? CRL-1427?) was grown for the assessment of bone cell proliferation and differentiation in vitro. The study parameters were assessed using cell viability by MTT assay, alkaline phosphatase (ALP), and collagen synthesis on bone health using ELISA-based assay. The cell viability was significantly increased by 24% in the Biofield Energy Treated group supplemented with 10% charcoal-dextran with fetal bovine serum (CD-FBS) (G3) compared to the untreated cells group (G1). The level of ALP was significantly increased by 72% in the G3 group compared to the G1 group. Additionally, the level of collagen synthesis was significantly (p?0.001) increased by 19% in the G3 group compared to the G1 group. The overall results demonstrated that the Biofield Energy Treated DMEM has the potential for bone mineralization and bone cells growth as evident via increased levels of collagen and ALP. Therefore, the Biofield Energy Healing (The Trivedi Effect?) Treatment could be useful as a bone health promoter for various bone-related disorders like low bone density, osteogenesis imperfecta, and osteoporosis, etc.  Full article
    References
    [1]
    Yang Z, Xiong HR (2012) Culture conditions and types of growth media for mammalian cells. In L. Ceccherini-Nelli and B. Matteoli (ed.), Biomedical Tissue Culture (3-18). InTech. ISBN 978-953-51-0788-0. http://dx.doi. org/10.5772/3071
    [2]
    Beloti MM, Rosa AL (2005) Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz Dent J 16: 156-161.
    [3]
    Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B (1991) Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner 14: 237-250.
    [4]
    Robison R, Soames KH (1924) The possible significance of hexophosphoric esters in ossification Part II. The phosphoric esterase of ossifying cartilage. Biochem J 18: 740-754.
    [5]
    Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280: 33132-33140.
    [6]
    Gaur T, Rich L, Lengner CJ, Hussain S, Trevant B, Ayers D, Stein JL, Bodine PV, Komm BS, Stein GS, Lian JB (2006) Secreted frizzled related protein 1 regulates WNT signaling for BMP2 induced chondrocyte differentiation. J Cell Physiol 208: 87-96.
    [7]
    Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140: 530-537.
    [8]
    Canalis E (1987) Effects of tumor necrosis factor on bone formation in vitro. Endocrinology 121: 1596-1604.
    [9]
    Canalis E, Centrella M, McCarthy T (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81: 1572-1577.
    [10]
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz R, Hewick R, Wang EA (1988) Novel regulators of bone formation: Molecular clones and activities. Science 242: 1528-1534.
    [11]
    Yount G, Patil S, Dave U, Alves-dos-Santos L, Gon K, Arauz R, Rachlin K (2013) Evaluation of biofield treatment dose and distance in a model of cancer cell death. J Altern Complement Med 19: 124-127.
    [12]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Morphological and molecular analysis using RAPD in biofield treated sponge and bitter gourd. American Journal of Agriculture and Forestry 3: 264-270.
    [13]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Effect of biofield energy treatment on chlorophyll content, pathological study, and molecular analysis of cashew plant (Anacardium occidentale?L.).?Journal of Plant Sciences 3: 372-382.
    [14]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2016) Molecular analysis of biofield treated eggplant and watermelon crops. Adv Crop Sci Tech 4: 208.
    [15]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Effect of biofield treated energized water on the growth and health status in chicken (Gallus gallus domesticus). Poult Fish Wildl Sci 3: 140.
    [16]
    Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141.
    [17]
    Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7: 253-257.
    [18]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Antibiogram pattern of Shigella flexneri: Effect of biofield treatment. Air Water Borne Diseases 3: 122.
    [19]
    Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Antimicrobial susceptibility pattern and biochemical characteristics of Staphylococcus aureus: Impact of biofield treatment. J Microb Biochem Technol 7: 238-241.
    [20]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Effect of biofield energy treatment on Streptococcus group B: A postpartum pathogen. J Microb Biochem Technol 7: 269-273.
    [21]
    Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 202-205.
    [22]
    Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) An evaluation of biofield treatment on thermal, physical and structural properties of cadmium powder. J Thermodyn Catal 6: 147.
    [23]
    Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Effect of Biofield energy treatment on physical and structural properties of calcium carbide and praseodymium oxide. International Journal of Materials Science and Applications 4: 390-395.
    [24]
    Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Characterization of physical, thermal and structural properties of chromium (VI) oxide powder: Impact of biofield treatment. J Powder Metall Min 4: 128.
    [25]
    Trivedi MK, Branton A, Trivedi D, Gangwar M, Jana S (2015) Antimicrobial susceptibility, biochemical characterization and molecular typing of biofield treated Klebsiella pneumoniae. J Health Med Inform 6: 206.
    [26]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Antibiogram, biochemical reactions, and genotypic pattern of biofield treated Pseudomonas aeruginosa. J Trop Dis 4: 181.
    [27]
    Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra R, Jana S (2015) Biofield treatment: A potential strategy for modification of physical and thermal properties of gluten hydrolysate and ipomoea macroelements. J Nutr Food Sci 5: 414.
    [28]
    Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra R (2015) Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5: 389.
    [29]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physicochemical and spectroscopic characterization of biofield energy treated gerbera multiplication medium. Plant 3: 57-63.
    [30]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physical, spectroscopic and thermal characterization of biofield treated fish peptone. Eur Biophys J 3: 51-58.
    [31]
    Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physicochemical characterization of biofield treated orchid maintenance/replate medium. J Plant Sci 3: 285-293.
    [32]
    Czekanska EM, Stoddart MJ, Richards RG, Hayes JS (2012) In search of an osteoblast cell model for in vitro research. Eur Cells Mater 24: 1-17.
    [33]
    Luo XH, Liao EY (2003) Effects of estriol on the proliferation and differentiation of human osteoblastic MG-63 cells. Endocr Res 29: 343-351.
    [34]
    Fu-Xiang Yu, Wei-Jian Hu, Bin He, Yi-Hu Zheng, Qi-Yu Zhang, and Lin Chen (2015) Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion. World J Surg Oncol 13: 52.
    [35]
    Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30: 589-597.
    [36]
    Nagakawa Y, Aoki T, Kasuya K, Tsuchida A, Koyanagi Y (2002) Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer. Pancreas 24: 169-178.
    [37]
    Wagner ER, Luther G, Zhu G, Luo Q, Shi Q, Kim SH, Gao JL, Huang E, Gao Y, Yang K, Wang L, Teven C, Luo X, Liu X, Li M, Hu N, Su Y, Bi Y, He BC, Tang N, Luo J, Chen L, Zuo G, Rames R, Haydon RC, Luu HH, He TC. (2011) Defective osteogenic differentiation in the development of osteosarcoma. Sarcoma 2011: 12. Article ID 325238
    [38]
    Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21: 441-483.
    [39]
    Schoppet M, Shanahan CM (2008) Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney Int 73: 989-991.
    [40]
    Lomashvili KA, Garg P, Narisawa S, Millan JL, O'Neill WC (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: Potential mechanism for uremic vascular calcification. Kidney Int 73: 1024-1030.
    [41]
    Lomashvili K, Cobbs S, Hennigar R, Hardcastle K, O'Neill W (2004) Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J Am Soc Nephrol 15: 1392-1401.
    [42]
    Moochhala SH, Sayer JA, Carr G, Simmons NL (2008) Renal calcium stones: Insights from the control of bone mineralization. Exp Physiol 93: 43-49.
    [43]
    Huang MS, Sage AP, Lu J, Demer LL, Tintut Y (2008) Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification. Biochem Biophys Res Commun 374: 553-558.
    [44]
    Whyte MP, Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW (Eds.), (2012) The Metabolic and Molecular Bases of Inherited Diseases (8th Edn.), Vol IV, McGraw-Hill, New York.
    [45]
    Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann NY Acad Sci 1192: 190-200.
    [46]
    Mill?n JL (2006) Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim.
    [47]
    Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2: 40.
    [48]
    Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17: 319-336.
    [49]
    Glimcher MJ, Muir H (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil Trans R Soc B 304: 479-508.
    [50]
    Landis WJ, Song MJ, Leith A, Mcewen L, Mcewen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. J Struct Biol 110: 39-54.
    [51]
    Deshpande AS, Beniash E (2008) Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth Des 8: 3084-3090.
    [52]
    Price PA, Toroian D, Lim JE (2009) Mineralization by inhibitor exclusion: The calcification of collagen with fetuin. J Biol Chem 284: 17092-17101.
    [53]
    Rubik B (1994) Manual healing methods. Alternative medicine: expanding medical horizons, Washington, DC, US Government Printing Office, NIH Publication No. 094-066.
Filter options
Publication Date
From to
Refine Publication Date
Subject Areas
Refine Subjects
Article Types
Refine Article Types
Countries / Territories
Refine Countries / Territories