View options
Result details

Results per page
Articles per page View Sort by

2 results matched your search query
Keywords = ARV

  • Open Access Research Article
    Export citation: APA   BibTeX   EndNote   RIS  
    Trends Journal of Sciences Research 2015, 2(3), 110-116. http://doi.org/10.31586/Agriculture.0203.05
    24 Views 45 Downloads PDF Full-text (388.734 KB)  HTML Full-text
    Abstract
    The effect irrigation method and tillage on yield and irrigation water productivity of rice was conducted in split plot experiment with three replications during the dry seasons 2012 and 2013 in field conditions at the Lake Geriyo Irrigation scheme farms in Yola, Nigeria. 3 irrigation management: 3, 6 and 9
    [...] Read more.
    The effect irrigation method and tillage on yield and irrigation water productivity of rice was conducted in split plot experiment with three replications during the dry seasons 2012 and 2013 in field conditions at the Lake Geriyo Irrigation scheme farms in Yola, Nigeria. 3 irrigation management: 3, 6 and 9 day interval with 3 tillage practices: zero, shallow and deep soil tillage were studied. Results showed that there were significant differences in paddy yield, harvest index and irrigation water productivity. 6 days interval irrigation management was placed to one group with 3 days irrigation interval on paddy yield and harvest index; higher water productivity of 3.58 and 3.51 kg ha-1 mm-1were recorded with 6 days irrigation interval in both seasons respectively. Therefore it can be recommended that 6 day interval irrigation which had better irrigation water productivity and saved up 29% irrigation water be adopted for rice cultivation under clay loam soils of guinea savanna zone of Nigeria.  Full article
    References
    [1]
    Adebayo AA. (1999). Climate I. Sunshine, temperature, Evaporation and relative Humidity. In Adebayo AA, Tukur AL, eds. Adamawa state in maps, Paraclete Publishers and Department of Geography, Federal University of Technology, Yola ? Nigeria Pp. 3-5.
    [2]
    Akande T. (2002). An overview of the Nigerian rice economy: The Nigerian Institute of Social and Economic Research (NISER) Ibadan.
    [3]
    Akinbile CO, Sangodoyin AY. (2011). Crop Water Use Responses of Upland Rice to Differential Water Distribution under Sprinkler Irrigation System. Pacific Journal of Science and Technology 12(1), 516-526.
    [4]
    Alam MK, Salim N. (2013). Changes in soil physical properties and crop productivity as influenced by different tillage depths and cropping patterns. Bangladesh Journal of Agriculture Resources 38(2), 289-299.
    [5]
    Ali-Abou Khalifa AB. (2010). response of some rice varieties to nitrogen fertilizer application under different irrigation intervals. Agriculture and Biology Journal of North America 1(1), 56-64.
    [6]
    Amiri E, Khandan M, Bozargi HR, Sadeghi SM, Rezaei M. (2009). Responses of rice varieties to water limit conditions in North Iran. World, Applied Sciences Journal 6(9), 1190- 1192.
    [7]
    Barker R, Dawe D, Tuong TP, Bhuiyan SI, Guerra LC. (2000). The outlook for water resources in the year 2020: Challenges for research on water management in rice production. International Rice Commission Newsletter 49, 7-21.
    [8]
    Belder P, Bournman BAM, Cabangon R, Quilang GEJP, Li Y, Spiertz JHJ, Tuong TP. (2004). Effect of water ? Saving Irrigation on rice yield and water use in tropical low land conditions in Asian, Agricultural Water Management 65(3), 193-210
    [9]
    Bray RH, Kurtz LT. (1945). Determination of Total, Organic and Available forms of phosphorus in soils. Soil Science Society of American, Modeson 59, 45-49.
    [10]
    Cassel DK. (1982). Tillage effects on soil bulk density and mechanical impedance. In Unger PW, Van Doren DM, Eds. predicting tillage effects on soil physical properties and processes. ASA-SSSA, Madison, USA, PP. 45-67.
    [11]
    Childs EC, Bybordi W. (1969).The vertical movement of water in a stratified porous material: 1. Infiltration, Water Resources Research 5(2), 446-459, doi: 10.1029/WR005i002p004
    [12]
    Clemmens AJ, Allen RG, Burt CM. (2008). Technical concepts related to conservation of irrigation and rainwater in agricultural systems. Water Resources Research, 44, W00E03, 15 p.
    [13]
    CropStat (2007). CropStat for Windows, version 7.2. International Rice Research Institute, Metro Manila, Philippines.
    [14]
    Dahmardeh K, Rad MRP, Rad MRN, Hadizadeh M. (2015). Effects of potassium rates and irrigation regimes on yield of forage sorghum in arid regions. International Journal of Agronomy and Agricultural Research 6(4), 207-212
    [15]
    Gajri PR, Gill KS, Singh R, Gill BS. (1999). Effect of pre- planting tillage on crop yields and weed biomass in a rice- wheat system on a sandy loam soil in Punjab. Soil and Tillage Research 52, 83-89
    [16]
    Hameed KA, Jaber FA, Mosa AJ. (2013). Irrigation Water Use Efficiency for Rice Production in Southern Iraq under System of Rice Intensification (SRI) Management. Taiwan Water Conservancy 61(4), 86-93
    [17]
    Hobbs PR. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production. Journal of Agricultural Science 145, 127?137.
    [18]
    IRRI (1989). IRRI towards 2000 and beyond. IRRI Manila Philippines.
    [19]
    Mathew G, Johnkutty I. (2003). Effect of Minimum Tillage System on Productivity of Rice. Journal of Tropical Agriculture 41, 50-51
    [20]
    Olaleye AO, Osiname OA, Cofie O. (2004). ?Soil and Water Management for Rice Production in Nigeria?. Proceedings of the West Africa International Conference on Hunger without Frontiers. West African Society for Agricultural Engineering (WASAE), 20-24 September, 2004. Kumasi, Ghana. 259-265
    [21]
    Page AL, Miller RH, Keeney DR. (1986). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Soil Science Society of American Agronomy Monograph No.9, 2nd Edition, pp. 325-340.
    [22]
    Ryan J, George E, Abdul R. (2001). Soil and Plant Analysis Laboratory Manual. 2nd ed., International Centre for Agriculture Research in the Dry Areas (ICARDA) and National Agricultural Research Centre, Aleppo, Syria. X+172pp
    [23]
    Singh A, Kumar R, Kang JS. (2014). Tillage System, Crop Residues and Nitrogen to Improve the Productivity of Direct Seeded Rice and Transplanted Rice. Current Agriculture Research Journal 2(1), 14-29
    [24]
    Tantawi BA, Ghanem SA, (2001). Water use efficiency in rice culture. Agricultural Research Center, Giza (Egypt). CIHM-Optin Mediterraneennes, 40, 39-45.
    [25]
    Timon F. (2014). Effect of Regulated Irrigation and Tillage Practices Rice Growth and Yield Parameters in Adamawa State, Nigeria. Unpublished M.Tech Thesis, Modibbo Adama University of Technology Yola, Nigeria. pp 52
    [26]
    Tuong TP, Bouman BAM. (2003). Rice production in water- scarce environments. Proceedings of the Water Productivity Workshop, 12?14 November 2001. International Water Management Institute, Sri Lanka. Toung TP, Bounman BAM, Martimer M. 2005. More Rice, Less Water: Integrated Approaches for Increasing Water Productivity in Irrigated Rice ?Based Systems in Asia. Plant Production Science 5 (3), 229-239.
    [27]
    Trimmer WL. (1994). Estimating Water flow Rates: Oregon State University Extension Fact Sheet EC 1369.
    [28]
    Usman BH. (2005). The soils Adamawa State, North eastern Nigeria. In Igwe EC, Mshelia, SI, Jada MY. Eds. Agriculture in Adamawa state, Paraclete publishers Yola, Nigeria.
    [29]
    WARDA (2008). Growing Lowland Rice: a production handbook, Africa Rice Center (WARDA) Cotonou, Benin Republic p.42
  • Open Access Research Article
    Export citation: APA   BibTeX   EndNote   RIS  
    Trends Journal of Sciences Research 2019, 4(2), 80-87. http://doi.org/10.31586/InfectiousDiseases.0402.05
    37 Views 33 Downloads PDF Full-text (700.008 KB)  HTML Full-text
    Abstract
    Background: Anemia is the most frequent hematologic abnormality of HIV disease and one of the most common manifestations of nutritional deficiency disorders in the world. In sub-Saharan Africa, about 70% of the world’s people living with HIV/AIDS, where the prevalence of anemia is higher than in developed countries. The aim
    [...] Read more.
    Background: Anemia is the most frequent hematologic abnormality of HIV disease and one of the most common manifestations of nutritional deficiency disorders in the world. In sub-Saharan Africa, about 70% of the world’s people living with HIV/AIDS, where the prevalence of anemia is higher than in developed countries. The aim of this study was to determine the prevalence and factors associated with anemia among people living with HIV at Dodoma regional hospital during 2013-2014. Methodology: A retrospective cross-section study conducted among PLWHIV at Dodoma Regional Hospital between 2015 and 2016. A total of 869 PLWHIV were enrolled. Data extraction sheet were used to collect Socio- demographics, immune-hematological data and ARV status from existing patient’s files (CTC 2 card). Double entry of data in Microsoft excel were done and transferred for analyzing using SPSS v.16. Results: Majority of them were females 648(74.6%)and 508(58.2%) were between 19-45years with mean age of 38.84(±14.09). 824(94. 8%) were on ARV; where 640(73.6%) are from urban. The overall prevalence of anaemia among PLHIV was 59.5% of which 56.6% of these were on ARV, and 2.9% were not on ARV. Age, sex and CD4+ counts < 200cell/µl were among factors associated with anemia among PLWHIV. Conclusion: Moderate anaemia was common in the study population. Screening and management of anemia along with the proper use Anti-retroviral therapy may decrease risk of anemia and the effect ARV on red blood cells. Haemoglobin measurements should be taken before initiation of ARV and routinely followed among ARV users.  Full article
    Figures

    Figure 2 of 2

    References
    [1]
    Tesfaye Z and Enawgaw B (2014) Prevalence of anemia before and after initiation of highly active antiretroviral therapy among HIV positive patients in Northwest Ethiopia : a retrospective study. 7(1): 1-5.
    [2]
    Johannessen A, Naman E, Ngowi BJ, Sandvik L, Matee MI, Aglen HE, Gundersen SG and Bruun JN (2008) Predictors of mortality in HIV-infected patients starting antiretroviral therapy in a rural hospital in Tanzania. 10: 1-10.
    [3]
    Alem M, Kena T, Baye N, Ahmed R and Tilahun S (2013) Patients at the Anti-Retroviral Therapy Clinic at the University of Gondar. 2(3).
    [4]
    Ferede G and Wondimeneh Y (2013) Prevalence and related factors of anemia in HAART-naive HIV positive patients at Gondar University Hospital , Northwest Ethiopia. BMC Blood Disorders. BMC Blood Disorders 13(1): 1. Available at: BMC Blood Disorders.
    [5]
    Santiago-rodríguez EJ, Mayor AM, Fernández-santos DM, Ruiz-candelaria Y and Hunter-mellado RF (2014) Anemia in a cohort of HIV-infected Hispanics : prevalence , associated factors and impact on one-year mortality. 1-8.
    [6]
    Martin C, Poudel-tandukar K and Poudel KC (2014) HIV Symptom Burden and Anemia among HIV-Positive Individuals : Cross-Sectional Results of a Community-Based Positive Living with HIV ( POLH ) Study in Nepal. 1-16.
    [7]
    Brien MEO, Kupka R, Msamanga GI, Saathoff E, Hunter DJ and Fawzi WW (2005) Anemia Is an Independent Predictor of Mortality and Immunologic Progression of Disease Among Women With HIV in Tanzania. 40(2): 219-225.
    [8]
    Belperio PS and Rhew DC (2004) Prevalence and Outcomes of Anemia in Individuals with Human Immunodeficiency Virus : A Systematic Review of the Literature. 27-43.
    [9]
    Volberding PA, Levine AM, Dieterich D, Mildvan D, Mitsuyasu R, Saag M and Working HI V (2004) Anemia in HIV Infection : Clinical Impact and Evidence-Based Management Strategies. 94121.
    [10]
    Mata-marín JA, Gaytán-martínez JE, Martínez-martínez RE, Arroyo-anduiza CI, Fuentes-allen JL and Casarrubias-ramirez M (2010) Risk factors and correlates for anemia in HIV treatment-naïve infected patients : a cross-sectional analytical study. 3–7.
    [11]
    Cunha G, Santis D, Menezes D, Crivelenti F, Branda RA, Zomer R, Muniz DA, Momo G, Lima N De, Amorelli-chacel ME, Tadeu D and Artioli A (2011) International Journal of Infectious Diseases Hematological abnormalities in HIV-infected patients. 15: 808-811.
    [12]
    Zhou J, Jaquet A, Bissagnene E, Musick B, Wools-kaloustian K, Maxwell N, Boulle A, Wehbe F, Masys D, Iriondo-perez J, Hemingway-foday J and Law M (2012) Short-term risk of anaemia following initiation of combination antiretroviral treatment in HIV- infected patients in countries in sub-Saharan Africa , Asia-Pacific , and central and South America. Journal of the International AIDS Society. BioMed Central Ltd 15(1): 5. Available at: http://www.jiasociety.org/content/15/1/5.
    [13]
    Shen Y, Wang Z, Lu H, Wang J, Chen J, Liu L and Zhang R (2013) Prevalence of Anemia among Adults with Newly Diagnosed HIV / AIDS in China. 8(9): 1-6.
    [14]
    Amitis Ramezani, Arezoo Aghakhani, Mohammad Reza Sharif, Mohammad Banifazl, Ali Eslamifar, Ali Akbar Velayati (2008). Anemia Prevalence And Related Factors In HIV-Infected Patients: A Cohort Study. Iranian Journal of Pathology. 3(3), 125-128.
    [15]
    Agarwal D, Chakravarty J, Chaube L, Rai M, Agrawal NR and Sundar S (2010) High incidence of zidovudine induced anaemia in HIV infected patients in eastern India. (October): 386-389.
    [16]
    Omoregie R, Omokaro EU, Palmer O, Ogefere HO and Egbeobauwaye A (2009) Prevalence of anaemia among HIV-infected patients in Benin City, Nigeria. 11(1).
    [17]
    Lealem G, Tilehum Y, Zewdineh S, Daniel Y (2013). Anemia and Risk Factors in HAART Naıve and HAART Experienced HIV Positive Persons in South West Ethiopia: A Comparative Study. PLOS ONE. 8:8 | e72202.
    [18]
    Johannessen A, Naman E, Gundersen SG and Bruun JN (2011) Antiretroviral treatment reverses HIV-associated anemia in rural Tanzania. BMC Infectious Diseases. BioMed Central Ltd 11(1): 190. Available at: http://www.biomedcentral.com/1471-2334/11/190.
    [19]
    Denue BA, Bello HS and Abja AU (2013) Changes in blood profile of human immunodeficiency virus ( HIV ) -infected patients on highly active antiretroviral therapy ( HAART ) in North Eastern Nigeria. 5(8): 284-291.
    [20]
    Obirikorang C and Yeboah FA (2009) Blood haemoglobin measurement as a predictive indicator for the progression of HIV / AIDS in resource-limited setting. 7: 1–7.
    [21]
    Curkendall SM, Richardson JT, Emons MF, Fisher AE and Everhard F (2007) Incidence of anaemia among HIV-infected patients treated with highly active antiretroviral therapy *. 483-490.
    [22]
    Mugisha JO, Shafer LA, Paal L Van Der, Mayanja BN, Eotu H, Hughes P, Whitworth JAG and Grosskurth H (2008) Anaemia in a rural Ugandan HIV cohort : prevalence at enrolment , incidence , diagnosis and associated factors. 13(6): 788–794.
Filter options
Publication Date
From to
Refine Publication Date
Subject Areas
Refine Subjects
Article Types
Refine Article Types
Countries / Territories
Refine Countries / Territories